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Thermomechanical processes are studied at the contact area of a metal brake disk and brake block during 
braking. Expressions are obtained for both the temperature and the thermal displacement in the center of 
the contact area caused by the effect of the friction heat source, whose power is a linear function of  time. 

A common disadvantage of mechanical friction brakes is the low wear resistance of the friction pairs, which 

depends on a number of factors, mainly temperature [ 1 ]. Therefore, during braking the temperature and the 

temperature-induced deformation of the surface at the friction contact area of a metal disk and blocks attract the 

close attention of designers and tribologists. During braking that is started at a high speed, the heat released has 

no time to heat the entire disk, as the process takes a short time. For this reason the temperature of its working 

surface is far in excess of its volume-average temperature. Moreover, in the intense brief braking the heat radiated 

into the environment can be neglected. Disks of alloy cast iron have the best wear resistance and strength [2 ]. The 

brake blocks are made of materials with low thermal conductivity; consequently, almost all the heat generated by 
friction is directed into the disk. 

Because of the facts enumerated the problem of determining the heating temperature and thermal bulging 

of the surface of a brake disk can be formulated as a boundary-value problem of quasistatic thermoelasticity for 

the half-space in the circular surface region of which heat sources operate. In this case, Blok's solution [3 ] for a 

continuously generating heat source of a constant power is used as a basis. However, in the course of braking the 

amount heat generated by friction forces is a linear decreasing function of time [41. In the literature there is no 

solution that would take into account this behavior of a friction source. 

1. The temperature on the surface z ffi 0 of a half-space heated over a circular area 0 -< r _< a by a 

continuously generating heat source with power q(r, ~) is expressed as [5 ] 

I a 

T (r, t) - 1 f f Q (s, r) exp [ -  (R 2 + S 2) l Io (2rS) sdsdr, (1) 
2KQrk) l /2  0 0 

where 

2 2 
R 2 = r ; S 2 = s ; Q ( r , r )  = q ( r , r )  

4k (t - r) 4k (t - r) (t - 0 3/2 " 

In braking the heat flux directed into the metal disk is [41 

q(r, t) = qo (l - ~s) H ( a -  r) H (ts-- t). (2) 

A maximum of the axisymmetric temperature field (1) is at the point r = 0. Therefore, with (2) in view, we find 
from (1): 
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Letting 

ex'' S'l 
Tma x (t)  -- T (0,  t) - qo f .~ . . . . .  1 - sdsdr (3)  

2c vk 4 Jrk 0 0 (t - r) 3/2 

Integrating (3) with respect to s, we obtain 

Traax (t) - - -  1 - 1 - exp (t - d r .  (4) 
c v ~ o 4k (t - r) 

2 
x - a (s )  

4k (t - r) ' 

kt kt s (6) 
Fo=- - -~ ,  F ~  2 '  

a a 

formula (4) is rewritten as 

rma x ( t) - -  

qoa 

8c v k 2 V~ 1_~ 
4Fo 

F (X) [1 - exp ( -  X) ] dX,  (7)  

where 

4a2X (Fo s - Fo) + a 2 
F ( x )  = tex "2 4 -~  

After calculation of the integrals on the r ight-hand side of (7), the following expression is obtained for the 

temperature in the center  of the contact area 

f (2Fo [ ill]+ Tmax(t ) = Q0 4vr-~o 1 1 
3--~os) exp ~Fo 

+ - - e x p  - + 1 v ~ e r f c  , 
6Fo s Fo s 6Fo s 2 

where Qo = qoa/K, erfc ~ = 1 - elf  ~. 

At short times t (Fo --, 0) the functions exp ( - 1 / 4 F o )  and erfc [ 2 v ' ~  ]-I 

a simpler form: 

(8) 

are decreasing and Eq. (8) takes 

Tmax (t) = 2Qo d (-F~- ) ( 1 -  2 F ~  �9 (9) 

Asymptotic expression (9) was originally obtained in 161. With the additional assumption of t << ts, it 

follows from (9) that 

( l o )  

Relation (10) is a solution of the problem of a temperature "burst" on the half-space surface [7 I. 
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2. The normal displacement (thermal distortion) of the half-space surface z = 0 induced by its heating by 
heat flux (2) is equal to [ 8  ]: 

Uz (r, t) = ~ taf 2n (3 y) 4n f f q ( s , Q  ~ 2 ; -  sdsdOd~ (11) 
0 0 0 t - - T  ' 

where 

2 S2 ~J a t (1 + v) r + -- 2rs cos/9 
= K ; Y = 4k (t - r) 

Proceeding from [9 ], the degenerate hypergeometric function 0(3/2 ,  2; -Y) is expressed in the form 

(3, 2 ; -  Y ) = e x p  (-~) [10 ( ; ) - I ,  ( ; ) ] .  (12) 

With (2) and (12), the displacement in the center r = 0 of the heated circular region of the half-space 
surface is found from Eq. (11) 

w O ( t ) =  qoa F l(X) 1 - e x p  - I 0 d X ,  (13) 
8 l 

4Fo 

where 

W O ( t ) = u z ( O , t ) . ,  Fl (X)= [1 - F.~os) 4.~ + 1._.__~ ;X3Fos 

X, Fo, and Fos are variable.s determined in accordance with formulas (5) and (6). 

With the corresponding integrals in (13) calculated, the thermal displacement in the center of the contact 

area can be expressed as follows: 

WO(0=B - 2 F o  1 - Fo + ~  1 - ~ l ( F ~ 1 7 6  , (14) 

where 

B = 6KQoa  ; ~ m  (F~ = 
I 

8Fo 

d X  exp (- x) Zo (x) X , ~ , .  
(m = 1, 2). 

The functions Wm(Fo) are positive-definite. The maximum of the integrand function exp ( - X ) I o ( X )  is 1 at 

X = 0. Consequently, qJm(Fo) < ~ d X / X  m+! and for wo(t) we have the estimate 
1 / 8Fo 

W~ _< [- 2Fo 1 + -  1 -  ---~ + - -  . 
4 1 x 32Fo s 1 

8 Fo 8 Fo 

Hence, after calculation of the integrals, we have 

u, (0, t) _< 0,  

thai is, as a result of friction heating the disk surface is always convex. 
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At short times Fo ~ 0, tPm(Fo ) ~ O, and 

u z ( O , t ) = - 2 B F o (  1 -  F2~os ) �9 (15) 

Relation (15) gives a limit estimate of the thermal bulging of the working surface of the disk. 
In an approximate calculation of the integrals Wm(Fo) for arbitrary parameters Fo, we expand the modified 

Bessel function lo(x) into a power series in small values of the argument [10 ] 

6(x) x <  x 0 
/=o q !)2 ' 

(16) 

and asymptotics for large arguments [91 

I o(x) =exp(x) ~, [(2y+I)!!I 2 
/=o J!(8x) / , x>x o. (17) 

The point x o E R + corresponds to the transition from formula (16) to (17) in calculating the modified 

Bessel function lo(x), and, according to [9], it is 3.75. The number N in (17) is chosen to achieve the desired 
calculation accuracy. 

On the basis of (17) for Fo satisfying the inequality Fo < 1/Sxo, we obtain from (14): 

Wo(Fo)=-2Fo (I- F2-~s ) +g(Fo, A), (18) 

where 

g(F~176176 /=0~' [(2/ + I) !!12 ( A j !  2j+3 + FOFo s 21+51 ] (F~ 

A = 1 - - -  
Fo ~o (0 
Fo s W 0 (Fo) - B 

At Fo > 1/Sxo, from (16) we have the thermal distortion in the form 

W 0(Fo)  = - 2 F o  1 - Fo + G ( x  O,Fo) + g  ,A . (19) 

Here, 

G ( x  O,Fo) = d  O(x O, F o ) -  ~_~ 
j=l 

A[ ("+o)] d o (Xo, Fo) = X dl (xO) - dl + 

I 
H / ( x  O, Fo) " 

2=; (j !)2 

1[ (1)] 
a2(x0)-a2 ~ ; 

A[ ( 31 Hj(Xo, Fo) = ~ -  D2.i-I (xo) - D2j-I + 

l [ + D2j- 1 (Xo) - O2j- 1 " 
128Fo s (j + 1) :2 
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Fig. 1. Plot of temperature Tmax in circular contac ta rea  (a) and of thermal 

distortion W0 of the surface of brake disk (b) versus time: Tmax, ~ w0,/tm; 

t, sec. 

1 
d I (x) = - x exp (- x) - E l (x) ; d 2 ( x ) = T x e x p ( - x )  1 -  + ~ - E  l ( x ) ;  

Dra (~) = exp ( -  ~) 
m m ! ~m-l 

( " - 0 '  1=0 
E I ( ~ ) = - E i ( - ~ ) =  i e x p t - ~ ) d ~  

is an integral exponential function. 

3. Let us s tudy the time behavior of the temperature Tmax(t) and thermal distortion Wo(t) of the surface 

of a disk made of cast iron with the following physical and mechanical characteristics: v - 0.26; k - 1.286.10 -5  
m2/sec; K - 50 W / m . ~  a t ,- 12.10 -6 ~ The area of the lateral surface of the disk A a -- 329.10 -4  m 2 (the 

nominal contact area);  the area of the working surface of the block Aw - 32.9.10 -4 m 2, i.e., the mutual overlap 

coefficient is 0.1; the braking time ts " 4.8 sec. 

In Fig. la  one can see curves of temperature versus time (curve 1 corresponds to the temperature determined 

from formula (8); curves 2 and 3 correspond to formulas (9) and (10), respectively), and Fig. lb  illustrates the 

time behavior of the thermal distortion of the contact area calculated from formulas (18) and (19). The numerical 

values presented show that  relation (9) gives good results at t < 0.72 sec, and (10) is good at t < 0.48 sec. As can 

be seen from the plots presented, the temperature of the disk surface is maximal at t = 2.4 sec, while the thermal 

displacement increases during the entire braking period. 
The present calculations are compared with the known experimental data of [11 ], where it was found by 

dynamometry  that in deceleration of an automobile with a weight of one ton from 96.6 k m / h  to a full stop, the 

load P per block was, on average, about 680 N. The initial temperature of the disk surface measured by a 

thermocouple at the start  of braking was 175~ and the maximum temperature in the process of braking was 215~ 

i.e., the temperature burst was 40~ The amount  of friction heat  released in the braking process was Q. = 

119.7.103 J. Then, the initial heat flux in the disk 

Q* = 757.9.109 W / m  2 
qo = Aats 

and it follows from (8) that the temperature of the surface of the disk at the end of braking was 45~ which agrees 

well with the experimental 40~ 
A study of wear products produced by friction contact of a disk and blocks carried out in [12 1 showed that 

they were formed at 475~ which exceeds greatly the calculated temperature indicated above. Therefore,  the 

method of determining the heating temperature of the disk needs some refinements. In particular, it should be 

taken into consideration that in the course of braking, wear takes place only at the contact of the block with the 

disk, i.e., in the actual contact area 

P (20) 
A r -  HM" 
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In this case the time of contact of the surface of the disk with the block is defined by the foUowing relation 

t - ts Ar (21) 

For the material considered (alloy cast iron), Meyer's hardness decreases rapidly as the temperature 
increases, and at T ffi 475~ it is equal to 40 MPa [131. Then it follows from (20) that A r I 17- 10 -5 m 2. Substituting 
this value of the actual contact area into (21) gives the contact time t ffi 0.248 sec. In this case, the initial heat flux 
density q0 ffi 7579.103 W/m 2, and from Eqs. (8) and (9), T ffi 298~ and T ffi 303~ respectively, which is in good 

agreement with the experimental temperature "burst" of 300~ 

N O T A T I O N  

A a, nominal contact area; Ar, actual contact area; Aw, working surface area of block; co, heat capacity per 
unit volume; k, thermal diffusivity; erf ~, probability integral; K, thermal conductivity; T(r, t), temperature field; 

r, radial coordinate; t, time; ts, braking time; Fos, dimensionless braking time; q0, friction heat flux density at 
initial moment; v, Poisson's ratio; a t, temperature coefficient of linear expansion; H(.  ), Heaviside unit function; 

I0( ' ) ,  modified first-order Bessel functions; HM, Meyer's hardness. 
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